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The structure of scientific collaboration networks is investigated.
Two scientists are considered connected if they have authored a
paper together and explicit networks of such connections are
constructed by using data drawn from a number of databases,
including MEDLINE (biomedical research), the Los Alamos e-Print
Archive (physics), and NCSTRL (computer science). I show that these
collaboration networks form ‘‘small worlds,’’ in which randomly
chosen pairs of scientists are typically separated by only a short
path of intermediate acquaintances. I further give results for mean
and distribution of numbers of collaborators of authors, demon-
strate the presence of clustering in the networks, and highlight a
number of apparent differences in the patterns of collaboration
between the fields studied.

A social network is a collection of people, each of whom is
acquainted with some subset of the others. Such a network

can be represented as a set of points (or vertices) denoting
people, joined in pairs by lines (or edges) denoting acquaintance.
One could, in principle, construct the social network for a
company or firm, for a school or university, or for any other
community up to and including the entire world.

Social networks have been the subject of both empirical and
theoretical study in the social sciences for at least 50 years
(1–3), partly because of inherent interest in the patterns of
human interaction, but also because their structure has im-
portant implications for the spread of information and disease.
It is clear, for example, that variation in just the average
number of acquaintances that individuals have (also called the
average degree of the network) might substantially inf luence
the propagation of a rumor, a fashion, a joke, or this year’s f lu.

A famous early empirical study of the structure of social
networks, conducted by Stanley Milgram (4), asked test subjects,
chosen at random from a Nebraska telephone directory, to get
a letter to a target subject in Boston, a stockbroker friend of
Milgram’s. The instructions were that the letters were to be sent
to their addressee (the stockbroker) by passing them from person
to person, but that they could be passed only to someone whom
the passer knew on a first-name basis. Because it was not likely
that the initial recipients of the letters were on a first-name basis
with a Boston stockbroker, their best strategy was to pass their
letter to someone whom they felt was nearer to the stockbroker
in some sense, either social or geographical: perhaps someone
they knew in the financial industry, or a friend in Massachusetts.

A moderate number of Milgram’s letters did eventually
reach their destination, and Milgram discovered that the
average number of steps taken to get them there was only
about six, a result that has since passed into folklore and was
immortalized by John Guare in the title of his 1990 play, Six
Degrees of Separation (5). Although there were certainly biases
present in Milgram’s experiment—letters that took a longer
path were perhaps more likely to get lost or forgotten, for
instance (6)—his result is usually taken as evidence of the
‘‘small-world hypothesis,’’ that most pairs of people in a
population can be connected by only a short chain of inter-
mediate acquaintances, even when the size of the population
is very large.

Milgram’s work, although cleverly conducted and in many
ways revealing, does not, however, tell us much about the
detailed structure of social networks, data that are crucial to

the understanding of information or disease propagation.
Many other studies have addressed this problem (discussions
can be found in refs. 1–3). Foster et al. (7), Fararo and
Sunshine (8), and Moody and White (9), for instance, all
conducted studies of friendship networks among middle- or
high-school students, Bernard et al. (10) did the same for
communities of Utah Mormans, Native Americans, and Mi-
cronesian islanders, and there are many other examples to be
found in the literature. Surveys or interviews were used to
determine friendships.

Although these studies directly probe the structure of the
relevant social network, they suffer from two substantial
shortcomings that limit their usefulness. First, the studies are
labor intensive, and the size of the network that can be mapped
is therefore limited—typically to a few tens or hundreds of
people. Second, these studies are highly sensitive to subjective
bias on the part of interviewees; what is considered to be an
‘‘acquaintance’’ can differ considerably from one person to
another. To avoid these issues, a number of researchers have
studied networks for which there exist more numerous data
and more precise definitions of connectedness. Examples of
such networks are the electric power grid (3, 11), the Internet
(12, 13), and the pattern of air traffic between airports (14).
These networks, however, suffer from a different problem:
although they may loosely be said to be social networks in the
sense that their structure in some way ref lects features of the
society that built them, they do not directly measure actual
contact between people. Many researchers, of course, are
interested in these networks for their own sake, but to the
extent that we want to know about human acquaintance
patterns, power grids and computer networks are a poor proxy
for the real thing.

Perhaps the nearest that studies of this kind have come to
looking at a true acquaintance network is in studies of the
network of movie actors (11, 14). In this network, which has been
thoroughly documented and contains nearly half a million
people, two actors are considered connected if they have been
credited with appearance in the same film. However, although
this is genuinely a network of people, it is far from clear that the
appearance of two actors in the same movie implies that they are
acquainted in any but the most cursory fashion, or that their
acquaintance extends off screen. To draw conclusions about
patterns of everyday human interaction from the movies would,
it seems certain, be a mistake.

In this paper, I present a study of a genuine network of human
acquaintances that is large—containing over a million people—
and for which a precise definition of acquaintance is possible.
That network is the network of scientific collaboration, as
documented in the papers scientists write.

Scientific Collaboration Networks
I study networks of scientists in which two scientists are consid-
ered connected if they have coauthored a paper. This seems a
reasonable definition of scientific acquaintance: most people
who have written a paper together will know one another quite
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well. It is a moderately stringent definition, since there are many
scientists who know one another to some degree but have never
collaborated on the writing of a paper. Stringency, however, is
not inherently a bad thing. A stringent condition of acquaintance
is perfectly acceptable, provided, as in this case, that it can be
applied consistently.

I have constructed collaboration graphs for scientists in a
variety of fields. The data come from four databases: MED-
LINE (which covers published papers on biomedical research),
the Los Alamos e-Print Archive (preprints primarily in theo-
retical physics), SPIRES (published papers and preprints in
high-energy physics), and NCSTRL (preprints in computer
science). In each case, I have examined papers that appeared
in a 5-year window, from 1995 to 1999 inclusive. The sizes of
the databases range from 2 million papers for MEDLINE to
13,000 for NCSTRL.

That some of the databases used contain unrefereed preprints
should not be regarded negatively. Although unrefereed pre-
prints may be of lower average scientific quality than papers in
peer-reviewed journals, as an indicator of social connection, they
are every bit as good as their refereed counterparts.

The idea of studying collaboration patterns by using data
drawn from the publication record is not new. There is a
substantial body of literature in information science dealing
with coauthorship patterns (15–19) and cocitation patterns
(20–22) (i.e., connections between authors established via the
citation of their works in the same literature). However, to our
knowledge, no detailed reconstruction of an actual collabo-
ration network has previously been attempted. Indeed, the
nearest thing to such a reconstruction comes not from infor-
mation science at all, but from the mathematics community,
within which the concept of the Erdös number has a long
history. Paul Erdös was an inf luential but itinerant Hungarian
mathematician, who apparently spent a large portion of his
later life living out of a suitcase and writing papers with those
of his colleagues willing to give him room and board (23). He
published at least 1,401 papers during his life, more than any
other mathematician in history, except perhaps Leonhard
Euler. The Erdös number measures a mathematician’s prox-
imity, in bibliographical terms, to the great man. Those who

have published a paper with Erdös have an Erdös number of
1. Those have published with a coauthor of Erdös have an
Erdös number of 2, and so on. An exhaustive list exists of all
mathematicians with Erdös numbers of 1 and 2 (24).

In addition to distance between authors, there are many other
interesting quantities to be measured on collaboration networks,
including the number of collaborators of scientists, the numbers
of papers they write, and the degree of ‘‘clustering,’’ which is the
probability that two of a scientist’s collaborators have themselves
collaborated. All of these quantities and several others are
considered in this paper.

Results
Table 1 gives a summary of some of the results of the analysis of
databases described in the previous section. In addition to results
for the four complete databases, results are also given for three
subject-specific subsets of the Los Alamos Archive, covering
astrophysics (denoted astro-ph), condensed matter physics
(cond-mat), and theoretical high-energy physics (hep-th). In this
section, I highlight some of these results and discuss their
implications.

Number of Authors. Estimating the true number of distinct
authors in a database is complicated by two problems. First,
two authors may have the same name. Second, authors may
identify themselves in different ways on different papers, e.g.,
by using first initial only, by using all initials, or by using full
name. To estimate the size of the error introduced by these
effects, all analyses reported here have been carried out twice.
The first time, all initials of each author are used. This will
rarely confuse two different authors for the same person
(although this will still happen occasionally) but sometimes
misidentifies the same person as two different people, thereby
overestimating the total number of authors. The second anal-
ysis is carried out using only the first initial of each author,
which will ensure that different publications by the same
author are almost always identified as such, but will with some
regularity confuse distinct authors for the same person. Thus
these two analyses give upper and lower bounds on the number
of authors and also give an indication of the expected precision

Table 1. Summary of results of the analysis of seven scientific collaboration networks

MEDLINE

Los Alamos e-Print Archive

SPIRES NCSTRLComplete astro-ph cond-mat hep-th

Total papers 2,163,923 98,502 22,029 22,016 19,085 66,652 13,169
Total authors 1,520,251 52,909 16,706 16,726 8,361 56,627 11,994

First initial only 1,090,584 45,685 14,303 15,451 7,676 47,445 10,998
Mean papers per

author
6.4 (6) 5.1 (2) 4.8 (2) 3.65 (7) 4.8 (1) 11.6 (5) 2.55 (5)

Mean authors
per paper

3.754 (2) 2.530 (7) 3.35 (2) 2.66 (1) 1.99 (1) 8.96 (18) 2.22 (1)

Collaborators
per author

18.1 (1.3) 9.7 (2) 15.1 (3) 5.86 (9) 3.87 (5) 173 (6) 3.59 (5)

Cutoff zc 5,800 (1,800) 52.9 (4.7) 49.0 (4.3) 15.7 (2.4) 9.4 (1.3) 1,200 (300) 10.7 (1.6)
Exponent t 2.5 (1) 1.3 (1) 0.91 (10) 1.1 (2) 1.1 (2) 1.03 (7) 1.3 (2)

Size of giant
component

1,395,693 44,337 14,845 13,861 5,835 49,002 6,396

First initial only 1,019,418 39,709 12,874 13,324 5,593 43,089 6,706
As a percentage 92.6 (4)% 85.4 (8)% 89.4 (3) 84.6 (8)% 71.4 (8)% 88.7 (1.1)% 57.2 (1.9)%

Second largest
component

49 18 19 16 24 69 42

Mean distance 4.6 (2) 5.9 (2) 4.66 (7) 6.4 (1) 6.91 (6) 4.0 (1) 9.7 (4)
Maximum distance 24 20 14 18 19 19 31
Clustering coefficient C 0.066 (7) 0.43 (1) 0.414 (6) 0.348 (6) 0.327 (2) 0.726 (8) 0.496 (6)

Numbers in parentheses are standard errors on the least significant figures.
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of many of our other measurements. In Table 1, both estimates
of the number of authors for each database are quoted. For
most other quantities, only an error estimate based on the
separation of the upper and lower bounds is quoted.

Mean Papers per Author and Authors per Paper. Authors typically
wrote about four papers in the 5-year period covered by this
study. The average paper had about three authors. Notable
exceptions are in theoretical high-energy physics and computer
science, in which smaller collaborations are the norm (an
average of two people), and the SPIRES high-energy physics
database, with an average of nine authors per paper. The reason
for this last impressive figure is that the SPIRES database
contains data on experimental as well as theoretical work.
High-energy experimental collaborations can run to hundreds or
thousands of people, the largest author list in the SPIRES
database giving the names of a remarkable 1,681 authors on a
single paper.

Number of Collaborators. The striking difference in collaboration
patterns in high-energy physics is highlighted further by the
results for the average number of collaborators of an author. This
is the average total number of people with whom a scientist
collaborated during the period of study—the average degree, in
the graph theorist’s language. For purely theoretical databases,
such as the hep-th subset of the Los Alamos Archive (covering
high-energy physics theory) and NCSTRL (computer science),
this number is low, on the order of four. For partly or wholly
experimental databases [condensed matter physics and astro-
physics at Los Alamos and MEDLINE (biomedicine)], the
degree is significantly higher, as high as 18 for MEDLINE. But
high-energy experiment easily takes the prize, with an average of
173 collaborators per author.

There is more to the story of numbers of collaborators,
however. In Fig. 1, histograms of the numbers of collaborators
of scientists in four of the smaller databases are shown. There
has been a significant amount of recent discussion of this
distribution for a variety of networks in the literature. A
number of authors (12, 13) have pointed out that if one makes
a similar plot for the number of connections (or ‘‘links’’) z to
or from sites on the World Wide Web, the resulting distribu-
tion closely follows a power law: P(z)'z2t, where t is a
constant exponent with (in that case) a value of about 2.5.

Barabási and Albert have suggested (25) that a similar power-
law result may apply to all or at least most other networks of
interest, including social networks. Others have presented a
variety of evidence to the contrary (14). My data do not follow
a power-law form perfectly. If they did, the curves in Fig. 2
would be straight lines on the logarithmic scales used. How-
ever, these data are well fitted by a power-law form with an
exponential cutoff:

P~z! , z 2 te 2 z/zc, [1]

where t and zc are constants. Fits to this form are shown as the
solid lines in Fig. 2. In each case, the fit has an R2 of better than
0.99 and P values for both power-law and exponential terms of
less than 1023 (except for the ‘‘all-initials’’ version of the
MEDLINE network, for which the exponential term has P 5
0.17, indicating that this distribution is moderately well fit by a
pure power-law form).

This form is commonly seen in physical systems and suggests
an underlying degree distribution that follows a power law, but
with some imposed constraint that places a limit on the maxi-
mum value of z. One possible explanation of this cutoff in the
present case is that it arises as a result of the finite (5-year)
window of data used. If this were the case, we would expect the
cutoff to increase with increasing window size. But even in the
(impractical) limit of infinite window size, a cutoff would still be
imposed by the finite working lifetime of a professional scientist
(about 40 years).

The values of t and zc are given in the table for each
database. The value of the cutoff size, zc, varies considerably.
For the mostly theoretical condensed matter, high-energy
theory, and computer science databases, it takes small values
on the order of 10, indicating that theorists rarely had more
than this many collaborators during the 5-year period. In other
cases, such as SPIRES and MEDLINE, it takes much larger
values. In the case of SPIRES, this is probably again because
of the presence of very large experimental collaborations in
the data. MEDLINE is more interesting. There are few very
large collaborations in the MEDLINE database, and yet there
are a small number of individuals with very large numbers of
collaborators. How does this arise? One possibility is that it is
the result of the practice in the biomedical research community
of laboratory directors signing their name to all (or most)
papers emerging from their laboratories. One can well imagine

Fig. 1. Histograms of the number of collaborators of scientists in four of the
databases studied here. The solid lines are least-squares fits to Eq. 1.

Fig. 2. Histograms of the number of papers written by scientists in four of the
databases. As with Fig. 1, the solid lines are least-squares fits to Eq. 2.
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that, with some individuals directing very large laboratories,
this could generate authors with a very high apparent number
of collaborators. [It is possible that a similar mechanism is at
work in the SPIRES data also.] This hypothesis could be
checked by verifying whether the individuals with the largest
numbers of collaborators are indeed lab directors or principal
investigators and might make an interesting topic for further
study.

The exponent t of the power-law distribution is also interest-
ing. We note that in all of the ‘‘hard sciences,’’ this exponent
takes values close to 1. In the MEDLINE (biomedicine) data-
base, however, its value is 2.5, similar to that noted for the World
Wide Web. The value t 5 2 forms a dividing line between two
fundamentally different behaviors of the network. For t , 2, the
average properties of the network are dominated by the few
individuals who have a large number of collaborators, whereas
networks with t . 2 are dominated by the ‘‘little people’’—those
with few collaborators. Thus, one finds that in biomedical
research, highly connected individuals do not determine the
average characteristics of their field, despite their names ap-
pearing on a lot of papers. In physics and computer science, on
the other hand, it appears that such individuals do determine
these characteristics.

In Fig. 2, histograms are shown of the number of papers that
authors have written in the same four databases. As the figure
shows, the distribution of papers follows a similar form to the
distribution of collaborators. The solid lines are again fits to
Eq. 1 and again match the data well in all cases. This form may
be regarded as a generalization of the well-known Lotka law
of scientific productivity, which states that the distribution of
numbers of papers written should follow a power law (16, 26).
The clear exponential cutoff seen in the distribution is again
presumably a result of the finite time window used in this study.
It would be interesting to test this hypothesis by varying the
window size, although a thorough test may have to wait until
more years of data are available; most of the databases studied
here have not been in existence long enough to give good
statistics on this point. The SPIRES database, which has been
in existence for more than a quarter of a century, is an
exception and might make an interesting case study (27).

The Giant Component. In all social networks, there is the possi-
bility of a percolation transition (28). In networks with very
small numbers of connections between individuals, all indi-
viduals belong only to small islands of collaboration or com-
munication. As the total number of connections increases,
however, there comes a point at which a giant component
forms—a large group of individuals who are all connected to
one another by paths of intermediate acquaintances. It appears
that all of the databases considered here are connected in this
sense. Measuring the size of groups of connected authors in
each database, we find (see Table 1) that in most of the
databases, the largest such group occupies around 80 or 90%
of all authors: almost everyone in the community is connected
to almost everyone else by some path (probably many paths)
of intermediate coauthors. In high-energy theory and com-
puter science, the fraction is smaller but still more than half the
total size of the network. (These two databases may, it appears,
give a less complete picture of their respective fields than the
others, because of the existence of competing databases with
overlapping coverage. The small size of the giant component
may in part be attributable to this.)

I have also calculated the size of the second-largest group of
connected authors for each database. In each case, this group
is far smaller than the largest. This is a characteristic signature
of networks that are well inside the percolating regime. In
other words, it appears that scientific collaboration networks
are not on the borderline of connectedness—they are very

highly connected and in no immediate danger of fragmenta-
tion. This is a good thing. Science would probably not work at
all if scientific communities were not densely interconnected.

Average Degrees of Separation. I have calculated exhaustively the
minimum distance, in terms of numbers of links in the network,
between all pairs of scientists in our databases for whom a
connection exists. I find that the typical distance between a pair
of scientists is about six; there are six degrees of separation in
science, just as there are in the larger world of human acquain-
tance. Even in very large communities, such as the biomedical
research community documented by MEDLINE, it takes an
average of only about six steps to reach a randomly chosen
scientist from any other, of the more than one million who have
published. We conjecture that this has a profound effect on the
way the scientific community operates. Despite the importance
of written communication in science as a document and archive
of work carried out, and of scientific conferences as a broadcast
medium for summary results, it is probably safe to say that the
majority of scientific communication still takes place by private
conversation. The existence of a large giant component, as
discussed in the previous section, allows news of important
discoveries and scientific information to reach most members of
the network via such private conversations, and clearly infor-
mation can circulate far faster in a world where the typical
separation of two scientists is six than it can in one where it is a
thousand or a million.

The variation of average vertex–vertex distances from one
database to another also shows interesting behavior. The
simplest model of a social network is the random graph—a
network in which people are connected to one another uni-
formly at random (29). For a given number N of scientists with
a given mean number z of collaborators, the average vertex–
vertex distance on a random graph varies as the logarithm of
N according to log Nylog z. Social networks are measurably
different from random graphs (3), but the random graph
nonetheless provides a useful benchmark against which
to compare them. Watts and Strogatz (11) defined a social
network as being ‘‘small’’ if typical distances were comparable
to those on a random graph. This implies that such networks
should also have typical distances that grow roughly logarith-
mically in N, and indeed some authors (e.g., ref. 14) have used
this logarithmic growth as the defining criterion for a ‘‘small
world.’’ In Fig. 3, the average distance between all pairs of
scientists for each of the networks studied here is shown,
including separate calculations for eight subject divisions of
the Los Alamos Archive. In total, there are 12 points, which
have been plotted against log Nylog z using the appropriate
values of N and z from Table 1. As the figure shows, there is
a strong correlation (R2 5 0.83) between the measured
distances and the expected log N behavior, indicating that
distances do indeed vary logarithmically with the number of
scientists in a community. As far as I am aware, this is the first
empirical demonstration of logarithmic variation with network
size for any real social network.

Also quoted in Table 1 are figures for the maximum separation
of pairs of scientists in each database, which tells us the greatest
distance we will ever have to go to connect two people. This
quantity is often referred to as the diameter of the network. For
all of the networks examined here, it is on the order of 20; there
is a chain of at most about 20 acquaintances connecting any two
scientists. (This result, of course, excludes pairs of scientists who
are not connected at all, as will often be the case for the 10 or
20% who fall outside the giant component.)

Clustering. Real social networks have another important property
that is absent from many network models. Real networks are
clustered, meaning they possess local communities in which a
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higher than average number of people know one another. A
laboratory or university department might form such a commu-
nity in science, as might the set of researchers who work in a
particular subfield. One way of probing for the existence of such
clustering in network data is to measure the fraction of ‘‘tran-
sitive triples’’ in a network (1), also called the clustering coef-
ficient C (11), which for a collaboration graph is the average
fraction of pairs of a person’s collaborators who have also
collaborated with one another. Mathematically,

C 5
33 number of triangles on the graph

number of connected triples of vertices
. [2]

Here a ‘‘triangle’’ is a trio of authors, each of whom is connected
to both of the others, and a ‘‘connected triple’’ is a single author
connected to two others. C 5 1 for a fully connected graph and
for a random graph, tends to zero as 1yN as the graph becomes
large.

In Table 1, values of C are given for each of the networks
studied here, and we can see that there is a very strong clustering
effect in the scientific community: two scientists typically have a
30% or greater probability of collaborating if both have collab-
orated with a third scientist. A number of explanations of this
result are possible. To some extent, it is certainly the result of the
appearance of papers with three or more authors: such papers
clearly contain trios of scientists who have all collaborated with
one another. However, the values measured here cannot be
entirely accounted for in this way (30) and indicate also that
scientists either introduce their collaborators to one another,
thereby engendering new collaborations, or perhaps that insti-
tutions bring sets of collaborators together to form a variety of
new collaborations. Processes such as these have been discussed
extensively in the social networks literature, in the context of
structural balance within networks (1).

The MEDLINE database is interesting in that it possesses a
much lower value of the clustering coefficient than the ‘‘hard
science’’ databases. This appears to indicate that it is significantly
less common in biological research for scientists to broker
new collaborations between their acquaintances than it is in
physics or computer science. This could again be a result of the
‘‘top-down’’ organization of laboratories under laboratory di-
rectors, which tends to produce ‘‘tree-like’’ collaboration net-

works, with many branches but few short loops. Such tree-like
networks are known to possess low clustering coefficients.

Conclusions
The collaboration networks of scientists in biology and medicine,
various subdisciplines of physics, and computer science have
been analyzed, by using author attributions from papers or
preprints appearing in those areas over a 5-year period from
1995 to 1999. We find a number of interesting properties of these
networks. In all cases, scientific communities seem to constitute
a ‘‘small world,’’ in which the average distance between scientists
via a line of intermediate collaborators varies logarithmically
with the size of the relevant community. Typically, we find that
only about five or six steps are necessary to get from one
randomly chosen scientist in a community to another. It is
conjectured that this smallness is a crucial feature of a functional
scientific community.

We also find that the networks are highly clustered, meaning
that two scientists are much more likely to have collaborated if
they have a third common collaborator than are two scientists
chosen at random from the community. This may indicate that
the process of scientists introducing their collaborators to one
another is an important one in the development of scientific
communities.

We have studied the distributions of both the number of
collaborators of scientists and the numbers of papers they write.
In both cases, we find these distributions are well fit by power-law
forms with an exponential cutoff. This cutoff may be caused by
the finite time window used in the study.

We find a number of significant statistical differences
between different scientific communities. Some of these are
obvious: experimental high-energy physics, for example, which
is famous for the staggering size of its collaborations, has a
vastly higher average number of collaborators per author than
any other field examined. Other differences are less obvious,
however. Biomedical research, for example, shows a much
lower degree of clustering than any of the other fields exam-
ined. In other words, it is less common in biomedicine for two
scientists to start a collaboration if they have another collab-
orator in common. Biomedicine is also the only field in which
the exponent of the distribution of numbers of collaborators is
greater than 2, implying that the average properties of the
collaboration network are dominated by the many people with
few collaborators, rather than, as in other fields, by the few
people with many.

The work reported in this paper represents, inevitably, only a
first look at the collaboration networks described. Many theo-
retical measures have been discussed elsewhere, in addition to
the distances and clustering studied here, which reflect socially
important structure in such networks. I hope that academic
collaboration networks will prove a reliable and copious source
of data for testing theories about such measures, as well as being
interesting in their own right, especially to ourselves, the scien-
tists whom they describe.

I am indebted to Paul Ginsparg and Geoffrey West (Los Alamos
e-Print Archive), Carl Lagoze (NCSTRL), Oleg Khovayko, David
Lipman and Grigoriy Starchenko (MEDLINE), and Heath O’Connell
(SPIRES), for making available the publication data used for this
study. I also thank Dave Alderson, Paul Ginsparg, Laura Landweber,
Ronald Rousseau, Steve Strogatz, and Duncan Watts for illuminating
conversations. This work was funded in part by a grant from Intel
Corporation to the Santa Fe Institute Network Dynamics Program.
The NCSTRL digital library was made available through the Defense
Advanced Research Planning Agency (DARPA)yCorporation for
National Research Initiatives test suites program funded under
DARPA Grant N66001–98-1–8908. The Los Alamos e-Print archive is
funded by the National Science Foundation under Grant PHY-
9413208.

Fig. 3. Average distance between pairs of scientists in the various commu-
nities, plotted against the average distance on a random graph of the same
size and average coordination number. The dotted line is the best fit to the
data that also passes through the origin.
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